High Moments of Large Wigner Random Matrices and Asymptotic Properties of the Spectral Norm

نویسنده

  • O. Khorunzhiy
چکیده

We consider the Wigner ensemble of n×n real symmetric random matrices of the form A (n) ij = 1 √ n aij , whose entries {aij}1≤i≤j≤n are independent random variables with the same symmetric probability distribution such that Eaij = v , and study the corresponding ensemble of random matrices with truncated random variables  (n) ij = 1 √ n â (n) ij , where âij = aijI[−Un,Un](aij). Our main result is that if Un = n 1/6−δ0 with arbitrary fixed 0 < δ0 < 1/6, then the moments M (n) 2k = E { Tr (Â) } obey an asymptotic bound in the limit k, n → ∞ such that k = O(n). This gives the corresponding bound for the probability distribution of the maximal eigenvalue λmax( ) in the limit n → ∞. Restriction supi,j E|aij | 12+2δ0 < ∞ implies the asymptotic equality A =  with probability 1 as n → ∞. In this case the probability distribution of λmax(A ) exhibits the same large deviations bound as the one of the truncated ensemble. The proof is based on the completed and improved version of the method proposed by Ya. Sinai and A. Soshnikov and further developed by A. Ruzmaikina. The bound we obtain is non-universal in the sense that it depends on the probability distribution of aij .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic expansion of the expected spectral measure of Wigner matrices

We compute an asymptotic expansion with precision 1/n of the moments of the expected empirical spectral measure of Wigner matrices of size n with independent centered entries. We interpret this expansion as the moments of the addition of the semicircle law and 1/n times an explicit signed measured with null total mass. This signed measure depends only on the second and fourth moments of the ent...

متن کامل

Even Walks and Estimates of High Moments of Large Wigner Random Matrices

We revisit the problem of estimates of moments E Tr(An) 2s of random n × n matrices of Wigner ensemble by using the approach elaborated by Ya. Sinai and A. Soshnikov and further developed by A. Ruzmaikina. Our main subject is given by the structure of closed even walks w2s and their graphs g(w2s) that arise in these studies. We show that the total degree of a vertex α of g(w2s) depends not only...

متن کامل

Low rank perturbations of large elliptic random matrices ∗ Sean O ’ Rourke

We study the asymptotic behavior of outliers in the spectrum of bounded rank perturbations of large random matrices. In particular, we consider perturbations of elliptic random matrices which generalize both Wigner random matrices and non-Hermitian random matrices with iid entries. As a consequence, we recover the results of Capitaine, Donati-Martin, and Féral for perturbed Wigner matrices as w...

متن کامل

Cartesian decomposition of matrices and some norm inequalities

Let ‎X be an ‎‎n-‎‎‎‎‎‎square complex matrix with the ‎Cartesian decomposition ‎‎X = A + i ‎B‎‎‎‎‎, ‎where ‎‎A ‎and ‎‎B ‎are ‎‎‎n ‎‎times n‎ ‎Hermitian ‎matrices. ‎It ‎is ‎known ‎that ‎‎$Vert X Vert_p^2 ‎leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)‎‎‎$, ‎where ‎‎$‎p ‎‎geq 2‎$‎ ‎and ‎‎$‎‎Vert . Vert_p$ ‎is ‎the ‎Schatten ‎‎‎‎p-norm.‎ ‎‎ ‎‎In this paper‎, this inequality and some of its improvements ...

متن کامل

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009